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• Motivation:

– PCA is unsupervised (blind to training labels)

– PCA focuses on variance (not always useful or relevant)

• LDA: a supervised dimensionality reduction approach

– 2-class LDA

– Multiclass extension

• Comparison between PCA and LDA



Linear Discriminant Analysis (LDA)

Data representation vs data classification

PCA aims to find the most accurate
data representation in a lower dimen-
sional space spanned by the maximum-
variance directions.

However, such directions might not
work well for tasks like classification.

Here we present a new data reduction
method that tries to preserve the dis-
criminatory information between differ-
ent classes of the data set.
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Linear Discriminant Analysis (LDA)

The two-class LDA problem
Given a training data set x1, . . . ,xn ∈ Rd consisting of two classes C1, C2, find
a (unit-vector) direction that “best” discriminates between the two classes.

b

b

b

b

b

b

b

b b

b

b
b

b

b

r
r

r

r
r

b

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 4/39



Linear Discriminant Analysis (LDA)

Mathematical setup

Consider any unit vector v ∈ Rd:
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x(t) = tv xi

ai

First, observe that projections of the
two classes onto parallel lines always
have “the same amount of separation”.

This time we are going to focus on lines
that pass through the origin.

The 1D projections of the points are

ai = vT xi, i = 1, . . . , n

Note that they also carry the labels of
the original data.
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Linear Discriminant Analysis (LDA)

Now the data look like this:
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How do we quantify the separation be-
tween the two classes (in order to com-
pare different directions v and select
the best one)?

One (naive) idea is to measure the dis-
tance between the two class means in
the 1D projection space: |µ1 − µ2|,
where

µ1 = 1
n1

∑
xi∈C1

ai = 1
n1

∑
xi∈C1

vT xi

= vT · 1
n1

∑
xi∈C1

xi = vT m1

and similarly,

µ2 = vT m2, m2 = 1
n2

∑
xi∈C2

xi.
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Linear Discriminant Analysis (LDA)

That is, we solve the following problem

max
v: ‖v‖=1

|µ1 − µ2|

where

µj = vT mj , j = 1, 2.

However, this criterion does not always
work (as shown in the right plot).

What else do we need to control?
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Linear Discriminant Analysis (LDA)

It turns out that we should also pay attention to the variances of the projected
classes:

s2
1 =

∑
xi∈C1

(ai − µ1)2, s2
2 =

∑
xi∈C2

(ai − µ2)2

Ideally, the projected classes have both faraway means and small variances.

This can be achieved through the following modified formulation:

max
v:‖v‖=1

(µ1 − µ2)2

s2
1 + s2

2
.

The optimal v should be such that

• (µ1 − µ2)2: large

• s2
1, s

2
2: both small
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Linear Discriminant Analysis (LDA)

Mathematical derivation
First, we derive a formula for the distance between the two projected centroids:

(µ1 − µ2)2 = (vT m1 − vT m2)2 = (vT (m1 −m2))2

= vT (m1 −m2) · (m1 −m2)T v
= vT Sbv,

where
Sb = (m1 −m2)(m1 −m2)T ∈ Rd×d

is called the between-class scatter matrix.

Remark. Clearly, Sb is square, symmetric and positive semidefinite. Moreover,
rank(Sb) = 1, which implies that it only has 1 positive eigenvalue!
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Linear Discriminant Analysis (LDA)

Next, for each class j = 1, 2, the variance of the projection (onto v) is

s2
j =

∑
xi∈Cj

(ai − µj)2 =
∑

xi∈Cj

(vT xi − vT mj)2

=
∑

xi∈Cj

vT (xi −mj)(xi −mj)T v

= vT

 ∑
xi∈Cj

(xi −mj)(xi −mj)T

v

= vT Sjv,

where
Sj =

∑
xi∈Cj

(xi −mj)(xi −mj)T ∈ Rd×d

is called the within-class scatter matrix for class j.
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Linear Discriminant Analysis (LDA)

The total within-class scatter of the two classes in the projection space is

s2
1 + s2

2 = vT S1v + vT S2v = vT (S1 + S2)v = vT Swv

where

Sw = S1 + S2 =
∑

xi∈C1

(xi −m1)(xi −m1)T +
∑

xi∈C2

(xi −m2)(xi −m2)T

is called the total within-class scatter matrix of the original data.

Remark. Sw ∈ Rd×d is also square, symmetric, and positive semidefinite.
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Linear Discriminant Analysis (LDA)

Putting everything together, we have derived the following optimization problem:

max
v:‖v‖=1

vT Sbv
vT Swv ←−Where did we see this?

Theorem 0.1. Suppose Sw is nonsingular. The maximizer of the problem is given
by the largest eigenvector v1 of S−1

w Sb, i.e.,

S−1
w Sbv1 = λ1v1.

Remark. rank(S−1
w Sb) = rank(Sb) = 1, so λ1 is the only nonzero (positive)

eigenvalue that can be found. It represents the the largest amount of separation
between the two classes along any single direction.
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Linear Discriminant Analysis (LDA)

Computing
The following are different ways of finding the optimal direction v1:

• Slowest way (via three expensive steps):

1. work really hard to invert the d× d matrix Sw,

2. do the matrix multiplication S−1
w Sb,

3. solve the eigenvalue problem S−1
w Sbv1 = λ1v1.

• A slight better way: Rewrite as a generalized eigenvalue problem

Sbv1 = λ1Swv1,

and then solve it through functions like eigs(A,B) in MATLAB.
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Linear Discriminant Analysis (LDA)

• The smartest way is to rewrite as

λ1v1 = S−1
w (m1 −m2)(m1 −m2)T︸ ︷︷ ︸

Sb

v1

= S−1
w (m1 −m2) · (m1 −m2)T v1︸ ︷︷ ︸

scalar

This implies that
v1 ∝ S−1

w (m1 −m2)

and it can be computed from S−1
w (m1 −m2) through rescaling!

Remark. Here, inverting Sw should still be avoided; instead, one should
implement this by solving a linear system Swx = m1 −m2. This can be
done through Sw \ (m1 −m2) in MATLAB.
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Linear Discriminant Analysis (LDA)

Two-class LDA: summary
The optimal discriminatory direction is

v∗ = S−1
w (m1 −m2) (plus normalization)

It is the solution of

max
v:‖v‖=1

vT Sbv
vT Swv ←− (µ1 − µ2)2

s2
1 + s2

2

where

Sb = (m1 −m2)(m1 −m2)T

Sw = S1 + S2, Sj =
∑

x∈Cj

(x−mj)(x−mj)T
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Linear Discriminant Analysis (LDA)

A small example
Data

• Class 1 has three points (1,2), (2,3), (3, 4.9), with mean m1 = (2, 3.3)T

• Class 2 has three points (2,1), (3,2), (4, 3.9), with mean m2 = (3, 2.3)T

Within-class scatter matrix

Sw =
(

4 5.8
5.8 8.68

)

Thus, the optimal direction is

v = S−1
w (m1 −m2) = (−13.4074, 9.0741)T normalizing−→ (−0.8282, 0.5605)T
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Linear Discriminant Analysis (LDA)

and the projection coordinates are

Y = [0.2928, 0.0252, 0.2619,−1.0958,−1.3635,−1.1267]
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Linear Discriminant Analysis (LDA)

Experiment (2 digits)
MNIST handwritten digits 0 and 1 (left: LDA, right: PCA)
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Linear Discriminant Analysis (LDA)

Multiclass extension
The previous procedure only applies to 2 classes. When there are c ≥ 3 classes,
what is the “most discriminatory” direction?

It will be based on the same intuition
that the optimal direction v should
project the different classes such that

• each class is as tight as possible;

• their centroids are as far from
each other as possible.

Both are actually about variances.
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Linear Discriminant Analysis (LDA)

Mathematical derivation

For any unit vector v, the tightness of the projected classes (of the training data)
is still described by the total within-class scatter:

c∑
j=1

s2
j =

∑
vT Sjv = vT

(∑
Sj

)
v = vT Swv

where the Sj , 1 ≤ j ≤ c are defined in the same way as before:

Sj =
∑

x∈Cj

(x−mj)(x−mj)T

and Sw =
∑

Sj is the total within-class scatter matrix.
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Linear Discriminant Analysis (LDA)

To make the class centroids µj (in the projection space) as far from each other
as possible, we can just maximize the variance of the centroids set {µ1, . . . , µk}:

c∑
j=1

(µj−µ̄)2 = 1
c

∑
j<`

(µj−µ`)2, where µ̄ = 1
c

c∑
j=1

µj ←− simple average.

b

b
b

b b

b

b

b
b

b

b

b

b

b

b

b
b

b

b
b

b
b

bb

b

+

+

r

r

r

v
r

+r

r

r
r

r

r
µ1

µ2

µ3

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 21/39



Linear Discriminant Analysis (LDA)

We actually use a weighted mean of the projected centroids to define the between-
class scatter:

c∑
j=1

nj(µj − µ)2, where µ = 1
n

c∑
j=1

njµj ←− weighted average

because the weighted mean (µ) is the projection of the global centroid (m) of
the training data onto v:

vT m = vT

(
1
n

n∑
i=1

xi

)
= vT

 1
n

c∑
j=1

njmj

 = 1
n

c∑
j=1

njµj = µ.

In contrast, the simple mean does not have such a geometric interpretation:

µ̄ = 1
c

c∑
j=1

µj = 1
c

c∑
j=1

vT mj = vT

1
c

c∑
j=1

mj


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Linear Discriminant Analysis (LDA)
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Linear Discriminant Analysis (LDA)

We simplify the between-class scatter (in the v space) as follows:

c∑
j=1

nj(µj − µ)2 =
∑

nj(vT (mj −m))2

=
∑

nj vT (mj −m)(mj −m)T v

= vT
(∑

nj(mj −m)(mj −m)T
)

v

= vT Sbv.

We have thus arrived at the same kind of problem

max
v:‖v‖=1

vT Sbv
vT Swv ←−

∑
nj(µj − µ)2∑

s2
j
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Linear Discriminant Analysis (LDA)

Remark. When c = 2, it can be verified that

2∑
j=1

nj(µj − µ)2 = n1n2

n
(µ1 − µ2)2, where µ = 1

n
(n1µ1 + n2µ2)

and
2∑

j=1
nj(mj−m)(mj−m)T = n1n2

n
(m2−m1)(m2−m1)T , m = 1

n
(n1m1+n2m2)

This shows that when there are only two classes, the weighted definitions are just
a scalar multiple of the unweighted definitions.

Therefore, the multiclass LDA
∑
nj(µj − µ)2/

∑
s2

j is a natural generalization
of the two-class LDA (µ1 − µ2)2/(s2

1 + s2
2).
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Linear Discriminant Analysis (LDA)

Computing

The solution is given by the largest eigenvector of S−1
w Sb (when Sw is nonsingular):

S−1
w Sbv1 = λ1v1.

However, the formula v1 ∝ S−1
w (m1 −m2) is no longer valid:

λ1v1 = S−1
w Sbv1 = S−1

w

∑
j

nj(mj −m) (mj −m)T v1︸ ︷︷ ︸
scalar

So we have to find v1 by solving a generalized eigenvalue problem:

Sbv1 = λ1Swv1.
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Linear Discriminant Analysis (LDA)

Simulation
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Linear Discriminant Analysis (LDA)

What about the second eigenvector v2?
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Linear Discriminant Analysis (LDA)

How many discriminatory directions can we find?

To answer this question, we just need to count the number of nonzero eigenvalues

S−1
w Sbv = λv

since only the nonzero eigenvectors will be used as the discriminatory directions.

In the above equation, the within-class scatter matrix Sw is assumed to be
nonsingular. However, the between-class scatter matrix Sb is of low rank:

Sb =
∑

ni(mi −m)(mi −m)T

= [
√
n1(m1 −m) · · ·

√
nc(mc −m)] ·


√
n1(m1 −m)T

...
√
nc(mc −m)T


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Linear Discriminant Analysis (LDA)
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Linear Discriminant Analysis (LDA)

Observe that the columns of the matrix

[
√
n1(m1 −m) · · ·

√
nc(mc −m)]

are linearly dependent:
√
n1 ·
√
n1(m1 −m) + · · ·+

√
nc ·
√
nc(mc −m)

= (n1m1 + · · ·ncmc)− (n1 + · · ·+ nc)m
= nm− nm
= 0.

The shows that rank(Sb) ≤ c− 1 (where c is the number of training classes).

Therefore, one can only find at most c− 1 discriminatory directions.
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Linear Discriminant Analysis (LDA)

Multiclass LDA algorithm
Input: Training data X ∈ Rn×d (with c classes)

Output: At most c− 1 discriminatory directions and projections of X onto them

1. Compute

Sw =
c∑

j=1

∑
x∈Cj

(x−mj)(x−mj)T , Sb =
c∑

j=1
nj(mj −m)(mj −m)T .

2. Solve the generalized eigenvalue problem Sbv = λSwv to find all nonzero
eigenvectors Vk = [v1, . . . ,vk] (for some k ≤ c− 1)

3. Project the data X onto them Y = X ·Vk ∈ Rn×k.
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Linear Discriminant Analysis (LDA)

The singularity issue of Sw
So far, we have assumed that the total within-class scatter matrix

Sw =
c∑

j=1
Sj , where Sj =

∑
xi∈Cj

(xi −mj)(xi −mj)T

is nonsingular, so that we can solve the LDA problem

max
v:‖v‖=1

vT Sbv
vT Swv

as an eigenvalue problem
S−1

w Sbv = λv.

However, in many cases (especially when having high dimensional data), the
matrix Sw ∈ Rd×d is (nearly) singular (i.e., large condition number).
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Linear Discriminant Analysis (LDA)
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104 eigenvalues of S

w
 (MNIST digits 0,1,2)

627th eigenvalue:
2.3258e-27
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Linear Discriminant Analysis (LDA)

How does this happen?

Let x̃i = xi−mj for each i = 1, 2 . . . , n
be the centered data points using its
own class centroid.
Define

X̃ = [x̃1 . . . x̃n]T ∈ Rn×d.

Then

Sw = X̃T X̃ ∈ Rd×d.
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Important issue: For high dimensional data (i.e., d is large), the centered data
often do not fully span all d dimensions, thus making rank(Sw) = rank(X̃) < d

(which implies that Sw is singular).
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Linear Discriminant Analysis (LDA)

Common fixes:

• Apply global PCA to reduce the dimensionality of the labeled data (all
classes)

Ypca =
(
X− [m . . .m]T

)
·Vpca

and then perform LDA on the reduced data:

Zlda = Ypca ·Vlda ←− learned from Ypca

• Use pseudoinverse instead: S†wSbv = λv

• Regularize Sw:

S′w = Sw + βId = QΛQT + βId = Q(Λ + βId)QT

where Λ + βId = diag(λ1 + β, . . . , λd + β).

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 36/39



Linear Discriminant Analysis (LDA)

Experiment (3 digits)
MNIST handwritten digits 0, 1, and 2
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Linear Discriminant Analysis (LDA)

Comparison between PCA and LDA

PCA LDA
Use labels? no (unsupervised) yes (supervised)
Criterion variance discrimination
#dimensions (k) any ≤ c− 1
Computing SVD generalized eigenvectors
Linear projection? yes ((x−m)T V) yes (xT V)
Nonlinear boundary can handle* cannot handle
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Linear Discriminant Analysis (LDA)

*In the case of nonlinear separation between the classes, PCA often works better
than LDA as the latter can only find at most c−1 directions (which are insufficient
to preserve all the discriminatory information in the training data).

• LDA with k = 1: does not work
well

• PCA with k = 1: does not work
well

• PCA with k = 2: preserves all
the nonlinear separation which
can be handled by nonlinear clas-
sifiers.
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